FAINT QUASARS AS RE-IONIZATION SOURCES OF EARLY UNIVERSE: AN OBSERVATIONAL CONSTRAINT

Myungshin Im (Seoul National University)

Yongjung Kim, Yiseul Jeon, Hyunsung Jun, Dohyeong Kim, Marios Karouzos, Jae-Woo Kim, Seong-Kook Lee, Changsu Choi, Minhee Hyun, Yoonchan Taak, Yongmin Yoon, Soojong Pak,

& IMS team

Cosmic IGM re-ionization

Robertson et al. (2010)

- UV photons (LyC, at λ < 91.2 nm)
- Possible sources: galaxies, quasars

Galaxies: Numerous, but UV photons (< 91.2nm) very few (f_{esc} ~ 1%)

LyC in LBG at z=3, with $f_{\rm esc}$ < 0.03 (Siana et al. 2010)

UV photons from galaxies, not enough for IGM ionization

Finkelstein et al. (2012)

Quasars: Not many, but strong UV flux at λ < 91.2nm

Composite UV spectra of 159 AGNs from HST COS (Stevans et al. 2014)

UV luminosity function of quasars

What are the main sources that illuminated the early universe?

Infrared Medium-deep Survey (IMS)

- Imaging survey at J < 23 AB mag, 120 deg² (+ Y-band data)
- UKIRT WFCAM observation (2009 ~ 2013)
- CFHT ugriz imaging data (z ~ 25 AB mag)
- High-z quasars, galaxy clusters, transients

High redshift quasar selection: Strong break at 121.6 nm (Lyα)

Jeon, Y. et al. (2016)

High redshift quasars have a peculiar color

Kim, Y. et al. (2015)

Faint quasar candidate at z ~ 6 IMS J2204+0112

R.A. Dec. (J2000.0)	i'	z'	Y	J	Redshift	M_{1450}
22:04:17.92 +01:11:44.8	25.26 ± 0.15	22.95 ± 0.07	23.10 ± 0.09	22.34 ± 0.08	5.944 ± 0.002	-23.59 ± 0.10

2016-10-31 Formatio

Spectroscopic observation

- Gemini/GMOS-S Observation (2015A)
 - Supported by K-GMT Science Program of KASI
 - Nod & Shuffle longslit (1" width) mode with R150_G5326 grating
 - 4x4 binning → 7.72 Å/pixel (~290 km/s)
 - RG610_G0331 filter to avoid the order-overlap
 - 12 sequences of 968 s (~3 hr)
 - Use five frames (~1.3 hr) with seeing < 1"

Spectrum of IMS J2204+0112

- Clear break at ~ 8443 Å (identified as Lyα)
 - \circ z = 5.944 \pm 0.002, M₁₄₅₀ = -23.59 \pm 0.10 mag

Quasar contribution is likely to be <10% of ionizing photons

UV photons at z=5

Finkelstein et al. (2012)

Selection of z ~ 5 quasars: Stellar contamination is a concern

McGreer et al. (2012)

UV luminosity function of quasars at z ~ 5

SQUEAN: SED Machine for Quasars in Early Universe

- Medium-band filters with 50nm with from 600-1000 nm
- 2.1m telescope at McDonald observatory

SQUEAN medium-band observation

- Multi-color selection (grizJ)
- Follow-up observation with SQUEAN

Spectroscopic confirmation (60% → >90% success rate)

UV luminosity function of quasars at z ~ 5: our limit

Summary

Faint quasars: IGM ionization source?

 We discovered one z ~6 quasar and a number of z ~ 5 (J~23 AB mag)

 The number of faint quasar: probably too few to fully account for the IGM ionization at z ~ 5 and 6